Some results related to Bessel's inequality in inner product spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Counterpart of Bessel’s Inequality in Inner Product Spaces and Some Grüss Type Related Results

A counterpart of the famous Bessel's inequality for orthornormal families in real or complex inner product spaces is given. Applications for some Grüss type inequalities are also provided.

متن کامل

Some Results on 2-inner Product Spaces

We onsider ”Riesz Theorem” in the 2-inner product spaces and give some results in this field. Also, we give some characterizations about 2-inner product spaces in b-approximation theory. AMS Mathematics Subject Classification (2000): 41A65, 41A15

متن کامل

Some inequalities in inner product spaces related to the generalized triangle inequality

In this paper we obtain some inequalities related to the generalized triangle and quadratic triangle inequalities for vectors in inner product spaces. Some results that employ the Ostrowski discrete inequality for vectors in normed linear spaces are also obtained.

متن کامل

Some Companions of the Grüss Inequality in Inner Product Spaces

Some companions of Grüss inequality in inner product spaces and applications for integrals are given.

متن کامل

Some Companions of Grüss Inequality in Inner Product Spaces

∥ ≤ 1 2 |Γ− γ| holds, then we have the inequality (1.3) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1 4 |Φ− φ| |Γ− γ| . The constant 1 4 is best possible in the sense that it cannot be replaced by a smaller constant. The following particular instances for integrals and means are useful in applications. Corollary 1. Let f, g : [a, b] → K (K = C,R) be Lebesgue measurable and such that there exists the constants φ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2019

ISSN: 1846-579X

DOI: 10.7153/jmi-2019-13-15